Solving the Manufacturing Cell Design Problem Using Human Behavior-Based Algorithm Supported by Autonomous Search
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولSolving the Manufacturing Cell Design Problem via Invasive Weed Optimization
Manufacturing plants are commonly organized in cells containing machines that process different parts of a given product. The Manufacturing Cell Design Problem (MCDP) aims at efficiently organizing the machines into cells in order to increase productivity by minimizing the inter-cell moves of parts. In this paper, we present a new approach based on Invasive Weed Optimization (IWO) for solving s...
متن کاملFocusing Search by Using Problem Solving Experience
Case-based reasoning (CBR) aims at using experience from the past in order to guide future problem solving rather than “starting from scratch” every time. We propose a CBR strategy particularly suitable for realizing this principle if heuristic search is used as a problem solving method: Given a new problem, a CBR method exploits previously solved problems in order to predict a region of the se...
متن کاملSolving the Unit Commitment Problem Using Modified Imperialistic Competition Algorithm
One of the most important problems for power system operation is unit commitment (UC), for which different constraints should be satisfied. UC is a nonlinear and large-scale problem; thus, using the evolutionary algorithms has been considered for solving the problem. In this paper, the solution of the UC problem was investigated using Modified Imperialistic Competition Algorithm (MICA). Simula...
متن کاملsolving flexible job-shop scheduling problem using hybrid algorithm based on gravitational search algorithm and particle swarm optimization
job shop scheduling problem has significant importance in many researchingfields such as production management and programming and also combinedoptimizing. job shop scheduling problem includes two sub-problems: machineassignment and sequence operation performing. in this paper combination ofparticle swarm optimization algorithm (pso) and gravitational search algorithm(gsa) have been presented f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2940012